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Coincidence-site lattices are characterized mathematically, in the general case, by a method that can 
be applied to a pair of original lattices of any symmetry, either metrically identical or metrically different, 
does not involve inspection and is readily adaptable to computer calculations. The procedure is illus- 
trated by several numerical examples. The proposed characterization of coincidence-site lattices is 
based on the theory of derivative lattices and makes extensive use of the concepts of superlattice and 
sublattice. Appended is a simple procedure for determining the transformation matrices needed to 
generate superlattices and sublattices of any multiplicity. 

Introduction 

In recent years field-ion and electron-microscopy stu- 
dies have shown that, in many materials of metallur- 
gical interest, the two crystals forming a grain bound- 
ary are often mutually oriented so that they have a 
common superlattice which continues without distur- 
bance from one crystal to the other. This superlattice 
is called coincidence-site lattice and the two crystals 
adjacent to the boundary are said to be in a coincidence- 
site relationship or coincidence-site related. The occur- 
rence and importance of coincidence-site lattices was 
first pointed out by Kromberg & Wilson (1949) in 
their study on secondary recrystallization of copper. 
Since then the concept of coincidence-site lattice has 
been used in the study of the 'structure' of grain bound- 
aries (Brandon, Ralph, Ranganathan & Wald, 1964; 
Brandon, 1966; Morgan & Ralph, 1967) and in con- 
nection with such subjects as grain-boundary migration 
in high-purity materials (Aust & Rutter, 1959) and 
nucleation and growth of boundary precipitates (Un- 
win & Nicholson, 1969). 

The interpretation of experimental results in terms 
of the coincidence-site lattice model requires the 
knowledge of the geometrical conditions under which 
two crystals are coincidence-site related. The problem 
of characterizing mathematically two identical lattices 
of any symmetry and randomly oriented with respect 
t o  each other has been treated by Goux (1961) and 

Lange (1967). Ranganathan (1966) has given a method 
for determining the axis and the angle of the rotation 
necessary to bring two identical cubic lattices, initially 
coincident, into a coincidence-site relationship and 
Ranganathan (1967) and Acton & Bevis (1971) have 
presented comprehensive tables of the angle-axis pairs 
for the cubic system. The proposed procedure involves 
several stages of inspection and can only be applied to 
cubic crystals of the same species. 

The mathematical characterization of a coincidence- 
site lattice of any symmetry and for lattices differing 
metrically as well as in orientation, may be useful in 
the analysis of a great variety of grain boundaries and 
in the study of regular aggregates such as twins and 
epitaxic and syntaxic intergrowths. As part of a sys- 
tematic study of the geometrical properties of lattices, 
a method for the determination of coincidence-site 
lattices in the general case has been derived. It is essen- 
tially an application of the theory of derivative lattices, 
and its use requires the systematic derivation of super- 
lattices and sublattices of any multiplicity. This deriva- 
tion can be made either by means of the procedure 
proposed by Santoro & Mighell (1972) or, more simply, 
by means of the method presented in the Appendix to 
this paper. 

General 

Two lattices A' and A" can be coincidence-site related 
if, and only if, two superlattices, F '  derived from A' 
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and F "  derived from A", are metrically identical. Two 
lattices which satisfy the above condition are in a coin- 
cidence-site relationship if their mutual  orientation is 
such that  the superlattices F '  and F "  are coincident. 
The common superlattice F formed by superposing F '  
and F "  continues without disturbance from lattice A' 
to lattice A" and is therefore a coincidence-site lattice. 
The characterization of coincidence-site lattices re- 
quires the solution of two problems:  first, to find the 
metrically identical superlattices, if any, consistent with 
the two given original lattices and, second, to specify 
the mutual  orientation of the two lattices when they 
are coincidence-site related. 

Let the lattices A' and A" be described by the triplets 
of  primitive translations a~ and a~', ( i=  1,2,3) respec- 
tively. As there are no restrictions on the choice of  a; 
and a~' we will suppose, for simplicity and without loss 
of generality, that  the triplets define the reduced cells 
of  the two lattices (Niggli, 1928; Santoro & Mighell, 
1970). The superlattices F '  and F "  can be generated 
from A' and A"  by means of the t ransformations 

b i = ~  Q~jaj (i,j= 1,2,3) ( la)  
Jl 

and 
b;~= ~ O;jaj'. ( lb) 

J J  
Methods  for evaluating all possible matrices (3 gen- 
erating the unique superlattices for any value of  the 
multiplicity A = IO1,* and definitions of 'unique '  super- 
lattices and sublattices, have been given by Santoro & 
Mighell (1972; see also Appendix to this paper). The 
cells based on the translation b~ and b~' are always con- 
sidered to be primitive; in general, they are not  simply 
related to the conventional cells~f of  F '  and F" .  For  
convenience we reduce them by means of  the transfor- 
mations 

r ; =  ~. A;jbj (2a) 
J 

and 
r ; ' =  Z A;~by. (2b) 

J 

Matrices A' and A"  can be obtained by means of  
known procedures (Mighell, Santoro & Donnay,  1969). 
F rom the above definitions it follows that  the lattices 
A' and A"  can be in a coincidence-site relationship if, 
and only if, there are two superlattices F '  and F "  
metrically identical, i.e. such that  we have 

r;. r~ =r~'.  r~' (3) 

for all values of  i and j .  To determine if A' and A" can 
be coincidence-site related, we systematically generate, 
up to any desired multiplicity, all the superlattices of  
A' and A"  and check if equation (3) is satisfied. An 
alternative method is to use the algori thm given by 

* A is also called the 'index' of the vectors b~ in A. 
t In this paper we call 'conventional cell' a cell, primitive 

or centered, whose axes are chosen parallel to symmetry direc- 
tions of the lattice (International Tables for X-ray Crystallo- 
graphy, 1969, p. 6). 

Bucksch (1972) by which the smallest common super- 
cell of  two lattices can be found, if any exists, with a 
minimum of trial and error. Lattices satisfying equa- 
tion (3) are illustrated in Fig. l(a) and (b). In Fig. 2 the 
two original lattices are shown in a coincidence-site 
relationship. F rom this figure, as well as from the def- 
initions previously given, it is evident that the coin- 
cidence-site related lattices are sublattices of the coin- 
cidence-site lattice. 

Let us consider a pair of  superlattices F '  and F "  
satisfying equation (3). The coincidence-site lattice F 
formed by superposing F '  and F "  can be defined by 

j , 

___  I _ _ ~ _ _  

(a) 

(b) 

Fig. 1. Two original lattices consistent with the same hexagonal 
primitive superlattice. The reduced form of the superlattice 
(dashed lines) and those of the original lattice (solid lines) 
of (a) and (b) are, respectively, 

a~ ao ~ 
0 0 

~ao~ ~ao 2 
0 0 

( " 
o o 

co 2 (hexagonal primitive), 
--½a~] ) 

Co 2 (hexagonal primitive), and 
-~ao' ) 

co 2 (orthorhombic C-centered). 
--~ao 2 ) 

The circlets represent nodes common to the superlattice 
and to the original lattices. 
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either the translations r~ or the translations r~' of equa- 
tion (3). If the translations r~ are used, then the lattices 
A' and A" are in a coincidence-site relationship if they 
are sublattices of F, i.e. if they are related to F by the 
transformations 

c~= ~ P~jrj (4a) 
J 

and 

where 

c;'= ~ P; j r j ,  (4b) 
J 

c;. c j=a; ,  aj and c;'. cj '=a;', aj', (5) 

and where the matrices P' and P" represent transfor- 
mations generating sublattices (Santoro & Mighell, 
1972) followed by reduction transformations, as we 
have assumed that a~ and a't' define the reduced cells of 
A' and A". In equation (4) the symbols c~ and c~' are 
used instead of a~ and a~' to indicate that the matrices 
P' and P" are not necessarily the inverses of A'O' and 
A"Q".  From equation (5) it is evident that the multi- 
plicities of the sublattices are IP ' [=l / [O' l  and [P"[= 
1/IO"l. 

In general, the cells based on the translations c~ and 
e~' have no simple relation to the symmetry elements of 
the corresponding lattices. Let us perform the transfor- 
mation 

e~= ~ W~jc) (6) 
J 

where the set of translations e~ define the conventional 
cell. Expressions for matrix W' have been tabulated 
for all possible cases (Mighell, Santoro & Donnay, 
1969) or, alternatively, can be evaluated by algebraic 
means (Bucksch, 1971). If the lattice A' possesses sym- 

metry higher than triclinic, then transformation (6) can 
be expressed in a number of different ways which are 
symmetrically equivalent. In fact, if M' is one of the 
symmetry operations of A' we have: 

f ;=  ~ M;.#j, (7) 
J 

where the triplets f~ and e~ are related by the symmetry 
operation M'. To obtain triplets of the same hand, M' 
must be restricted to a proper rotation of the lattice. 
In what follows we will assume I M'I = + 1. It is con- 
venient to refer the lattice to a Cartesian system. This 
is done by means of the transformation 

y~ = ~ L~jfj. (8) 
J 

The expression of matrix L' depends on how the Car- 
tesian system is attached to the lattice. We take y~ coin- 
cident with f'l and y~ coincident with f~ x f'z (Busing & 
Levy, 1967; Santoro, 1970). We set 

U'= L'M'W'P'. (9) 

The same sequence of transformations involving the 
lattice A" gives 

U" = L"M"W"P", (10) 

where W", M" and L" are defined as W', M' and L'. 
If  s is a vector whose components in the reference sys- 
tem r~ are the elements of the column vector ~, then the 
components of this vector in the systems y~ and y~' are 
given by: 

y ' =  ( [ l ' ) - l t r ,  y " =  ([l")-~tr (11) 

where [1' and [1" are the transposes of U' and U" re- 

J. \ \  \ , \ \ \  

\ 

. . . . .  ', "l \ V----I---- '\ 
Fig. 2. Lattices of Fig. l(a) and (b) mutually oriented so that they are in a coincidence-site relationship. The common super- 

lattice is indicated by heavy lines and the two original lattices by dashed and light lines. The circlets represent nodes common 
to the superlattice and to both original lattices. 
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spectively. By solving for tr we obtain" 

y " =  Ry' (12) 
where 

R = ( 0 " ) - ' ( 0 ' ) = ( E " ) - I ( M " ) - ' D ( M  ') (L') (13) 

and 

D -- ( V V " ) - I ( P " ) - ' ( P  ') (~ / ' ) .  (14) 

Matrix D defines the coincidence-site relationship of 
the lattices A' and A", i.e. the mutual orientation of the 
two lattices when they are coincidence-site related. The 
different ways of describing this mutual orientation are 
obtained from equation (13) by giving M' and M" all 
possible expressions consistent with the symmetry of 
A' and A" respectively. 

Special cases 

In the general case, the characterization of coincidence- 
site lattices is carried out first by determining, up to 
any desired multiplicity A, all possible coincidence-site 
lattices of A' and A", i.e. all the superlattices that sat- 
isfy conditions (3), and second by generating A' and 
A" as sublattices from each possible coincidence-site 
lattice. In this process all the possible pairs of matrices 
P' and P" necessary for the evaluation of matrix D of 
equation (14) are determined. Special situations may 
occur as a consequence of particular geometrical pro- 
perties of the lattices involved in a coincidence-site 
relationship. In what follows we will discuss some of 
the more frequent cases. 

It may happen that not all the unique superlattices 
generated from a given original lattice are metrically 
different from one another. For example, a cubic prim- 
itive lattice of parameter a0 gives six unique orthorhom- 
bic C-centered superlattices of multiplicity A = 3 having 
the same reduced cell 

(_o: o5002) 
a 2 0 . (15) 

When a group of unique and metrically identical super- 
lattices is generated from either A' or A" only one of 
the group needs to be retained in determining all the 
possible coincidence-site lattices of A' and A". 

A case of particular importance in the study of grain- 
boundary phenomena is encountered when the lattices 
A' and A" are metrically identical. For this special sit- 
uation the geometrical conditions necessary to have a 
coincidence-site relationship are always satisfied when 
Q ' =  (3". This is the same as saying that all the super- 
lattices of A' (or A") are possible coincidence-site lat- 
tices of A' and A". In many cases, however, not all 
these superlattices give non-trivial coincidence-site re- 
lationships. For example, if A' and A" are both cubic 
primitive and metrically identical with parameter a0, 
for the multiplicity A = 3 we have three possible coin- 
cidence-site lattices having reduced cells: 

0 (a); t - a o  ~ 0 (b); 
(2a 2 2a 2 3a021 

0 -ag] (c). (16) 

If we generate all the sublattices for A =½ consistent 
with the first two superlattices, we obtain the original 
cubic lattice only once in each case. This result can be 
interpreted by saying that the matrices P' and P" of 
equation (4a) and (4b) are equal and, consequently, the 
coincidence-site relationship is trivial. Geometrically, 
this means that the lattices A' and A" are coincident 
when they are coincidence-site related. On the other 
hand, if we generate the sublattices of multiplicity 
A = ½ from the third superlattice, a non-trivial solution 
results as we find that the original cubic lattice is pro- 
duced by the following two transformation matrices" 
p,=(½½_}/½zT . p,, tT~a /2  x x / 2 1  , 7Ix½½).  (17) ~ )  =,-~-~-~,-~ ½ ' , 

By noting that reduced and conventional cells are the 
same for a cubic primitive lattice ( W ' =  W " =  I, where I 
is the identity matrix) and that ( [ , , ) - l = a 0  and ( [ ' ) =  
1/ao, the expression for matrix R becomes" 

R = (I~/I")- ' ( P " ) -  ' (P')  (I~/I') = 

,~ ~ ~ ,~  ~ ~ , ½ 2 , - ~ ) ( M ' ) .  (18) 

In certain cases a coincidence-site lattice may be 
consistent with more than one coincidence-site rela- 
tionship, i.e. with more than one mutual orientation 
of A' and A". This situation arises when two or more 
of the sublattices generated by means of equation (4a) 
and/or two or more of the sublattices generated by 
means of equation (4b) are metrically identical. Let us 
call P~, P~. . . . .  and P'l', P2', - . .  the matrices generating 
the sublattice lC;, 2c;, . .. and 1c;', 2ci', . . .  respectively, 
and let us assume 

and 
lCl. lCj--"-~2Cl. 2Cj=. . .  =a~. aj 

~c;'. ~<, '= ,c / .  ~c','=.. .  = a / .  a;-'. 

For each pair of matrices P~, and P;,' we calculate a 
matrix D,,, defining a particular coincidence-site rela- 
tionship of the lattices A' and A". Two cases are pos- 
sible. Let us consider two matrices D,b and D~n. From 
equation (13) it is evident that, if these matrices are 
related by any one of the equations 

D.b = (~ I " ) -~D.z ,  D,,b = D~,~(~I'), 

D,,b = (~ I " ) - '  Db~(~l'), (19) 

where N' and N" are symmetry operations of A' and 
A" respectively, then the mutual orientation of A' and 
A" corresponding to D,b and Den is the same, i.e. we 
have the same coincidence-site relationship. However, 
if none of equations (19) is satisfied, matrices D,b and 
Dcd define two different mutual orientations of A' and 
A" consistent with the same coincidence-site lattice. 
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As a first example, let us consider two metrically 
identical, orthorhombic primitive lattices A' and A" of 
reduced cell 

3a02/4 (;02/40 ~)02) , (20) 

where a0 and c0 are any suitable parameters. A possible 
coincidence-site lattice for A = 2 is hexagonal primitive 
of reduced cell 

a 2 c02 
(;02 0 - a ~ / 2 ] .  (21) 

From this superlattice one obtains three unique sub- 
lattices of reduced cell (20) by applying the following 
transformation matrices: 

P~ = (½00/½10/001); p2= (oIo11½OlOOT); 
P3 = (12 10/½ ~o/ooT). 

In this case W ' =  W " =  I, so that we obtain" 

D12 (TAz0/2&lz0/00T); D -  _13 1 T  - - .  = ,3 - (2- z 0 / z  ~ 0 / 0 0 1 ) ,  

D23---- (½ 30/22 ½ 0 / O O l ) .  

These matrices do not satisfy any of equations (19) and, 
therefore, describe three different coincidence-site rela- 
tionships, all consistent with the same coincidence-site 
lattice of reduced cell (23). 

A n g l e - a x i s  pairs 

Matrix R of equation (13) expresses the mutual orien- 
tation of the coincidence-site-related lattices A' and A". 
This misorientation can also be specified by giving the 
axis and the angle of the rotation necessary to bring 
into a coincidence-site relationship the two lattices 
initially oriented with the reference systems y; and y;' 
coincident. For L '=  k", i.e. if the lattices A' and A" are 
metrically identical and if they are related in the same 
way to their respective Cartesian systems, the coinci- 
dence of y; and y;' also means coincidence of the two 
lattices. If A' and A" are not metrically equal, the ori- 
entation for which the two Cartesian systems are coin- 
cident merely fixes an origin for the relative rotation 
of the two lattices. By expressing matrix R in terms of 
the direction cosines u~ of the rotation axis and the 
rotation angle 5 about this axis (International Tables 
for X-ray Crystallography, 1959), we obtain: 

/[cos 5 + u~(1-cos 5)] 
R = / [ u l u ~ ( 1 - c o s  5)-u3 sin 5] 

\[u,us(1 - cos 5) + u2 sin 5] 

[u,u2(1 - cos 5) +//3 sin 5] 
[cos 5 + u22(1 -- cos 5)] 
[u2u3(1 -- cos 5) -- ul sin 5] 

cos ) .s,.:l ) 
[uz, u3(1 - cos 5) + ul sin . 
[cos 5 + u~(1-cos 5)] 

(24) 

From these expressions we have" 

D ~3 = (T00/010/00T) D,z(100/0T0/00T) 

D 23 = (T00/010/001) D,2. 

The three matrices, therefore, define only one unique 
coincidence-site relationship of A' and A". 

As a second example, let us consider two body- 
centered monoclinic lattices A' and A", metrically 
equal and having reduced cell 

2a02/3 a02 2a02 
a02/3 a02/3 a02/3]. (22) 

For A = 3 a possible coincidence-site lattice is the or- 
thorhombic C-centered lattice of reduced cell 

a02 2002 5a02) 
-a02 0 . (23) 

From this superlattice one obtains three unique sub- 
lattices of reduced cell (22) with the transformation 
matrices: 

; =(-~Ox/lOO/-sl-~), P~ = (½~-/100/½1½) P2 , T 1-rr.  
p 3 = ( _ ~ ½ , -  T~ ' ,  7/100/x x -z). 

For a lattice of reduced cell (22) we have (International 
Tables for X-ray Crystallography, 1969) W' = W" = 
(011/100/1Ti) and, from equation (14), we obtain" 

_ T 1  22" 2 .~.. 1/T3_ ½0) ; 1 1  3 1  D,~ - (~ ~ 1/~ D x3 = (~ ~0/~ ~0/~ ~r); 
_ T 1 - - 5 ~ - a l  Dz3- (~ ~1/~ ~1/~- ~0) • 

From this expression we obtain 

COS 5 = ( R l l  "t- R22 Jr- R33 - 1)/2 (25) 
and 

u~ :u2 :u3 = (R23-  R32): (R3~- R~3): (R~2-  R2,).  (26) 

Equations (25) and (26) have been used by Hornstra 
(1960) in the study of high-angle boundaries in dia- 
mond. For 5 =  180 ° equation (26) becomes indetermi- 
nate. In this case we derive, from the expression (24) of 
matrix R, 

Ul :/'/2:U3 ~--- ( R I I  -~- 1)1/2 : (R22 + 1)1/2:(R33 -F 1) 2/2. (27) 

The relative signs of u,, u2 and u3 can be determined 
from the signs of R,2, R,3 and R23 , through the relations 
R,2 = 2//,u2, R13 = 2ulu3 and R23 = 2u2u3 for 5 = 180 °. 

The direction cosines obtained from (26) and (27) 
are expressed in the system (y;). This system may not 
be convenient to describe coincidence-site-related lat- 
tices in certain cases. It may be useful, therefore, to 
transform u, the column vector formed by the coordi- 
nates u~, into a more appropriate reference system. For 
example, the transformation into the system e; defining 
the conventional cell is 

v = T u ,  (28) 
where 

T =  M '  L'. (29) 

By giving, to M' and M" of equation (13), the ex- 
pressions consistent with the proper symmetry opera- 
tions of the lattices A' and A", one obtains all the pos- 
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sible angle-axis pairs relating the two lattices when they 
are in a coincidence-site relationship. In many cases 
all the unique angle-axis pairs can be obtained from 
the simplified equation 

R = (L")  - '( M ") - '  D(L ' ) ,  (30) 

in which M" must assume all expressions consistent 
with the symmetry of A". These cases are encountered: 
(i) when A' and A" are both hexagonal or both rhom- 
bohedral, or when A" is hexagonal and A' rhombo- 
hedral; (ii) when neither A' nor A" is hexagonal or 
rhombohedral and A' has a symmetry equal to or 
lower than that of A". If one of the two lattices, say 
A', is hexagonal or rhombohedral, two cases arise: 
(i) if A" is cubic, tetragonal, or orthorhombic, all the 
possible angle-axis pairs are obtained from equation 
(13) in which M" is given all expressions consistent 
with the symmetry of A" and M' is each of the follow- 
ing matrices" 100/010/001 ; 010/I'-T0/001 ; ]'10/010/00T. 
(ii) If A" is monoclinic the expressions for M' must 
include 100/TT0/001; 110/100/001; 010/100/00] in ad- 
dition to the previous ones. 

As an example of the application of equations (25), 
(26) and (27) let us consider the case of two cubic prim- 
itive lattices A' and A", metrically identical, and having 
lattice parameter a0. A possible coincidence-site lattice 
for A = 3 is a hexagonal primitive superlattice of re- 
duced cell (16c). When A' and A" are coincidence-site 
related, their mutual orientation is expressed by equa- 
tion (18). As the original lattices are cubic, all the 
unique angle-axis pairs can be obtained by setting 
M ' =  I. We have, therefore, 

R = ( M " ) - ' ( { ½ { I - ~ { ½ 1 ½ { - } )  . (31) 

For M " =  I we obtain, from (25) and (26), 
z ~ - ~ - 1  

cos~=  3 _ ~ ~=146.4 ° 
2 

and 
R 2 3  - -  R 3 2  = - 1 , R 3 I  - R 1 3  = ½ ,  R I 2  - R21 = 31- , 

i.e. [ulu2ua]=['J11]. By setting 
T=(1/ao) (T00/001/010), 

we have 

v2 = 0 11 111-- . 
va 1 0 ] . \ 1 ]  

By substituting for M" the other 23 proper symmetry 
operations of the cubic lattice, we obtain the following 
unique angle-axis pairs: [111], ~--60 °, c(--180°; [211], 
,=180° ;  [110], c~=70.5 °, 7 '=109.5; [210], c~=131.8°; 
[311], c~= 146.4 °. These results are in agreement with 
the angle-axis pairs obtained by other methods. (Acton 
& Bevis, 197 I). 

APPENDIX 

In a previous paper (Santoro & Mighell, 1972) super- 
lattices and sublattices were defined, and a method for 

determining the transformation matrices generating 
the unique superlattices consistent with any given orig- 
inal lattice was presented. This method becomes labo- 
rious for large values of the multiplicity of the super- 
lattice. In some crystallographic applications, such as 
coincidence-site lattice theory, superlattices of high 
multiplicity play an important role and therefore a 
simpler and more direct procedure for generating the 
unique superlattices would be desirable. 

Let us consider the axial transformation 

ti = ~ Suaj ,  (32) 
J 

where the triplet of primitive non-coplanar translations 
ai defines any given original lattice. If the elements S u 
of matrix S are integers and if the determinant IS[ of 
the transformation is greater than unity, then the trans- 
lations t~, considered primitive, define a superlattice of 
the original lattice. The multiplicity, A, of the super- 
lattice is equal to [Sl and expresses the ratio of the 
volume of a primitive cell of the superlattice to that of 
a primitive cell of the original lattice. 

The superlattice generated by transformation (32) 
can also be generated by any one of the transformation 
matrices S' given by the equation 

S ' = H S K ,  (33) 

where the elements H u and K u of matrices H and K are 
integers and give I HI = I KI = 1. If we assume 

K = I ,  (34) 

where I is the identity matrix, i.e. if we impose the con- 
dition that the transformations S and S' must be ap- 
plied to the same primitive cell of the original lattice, 
we have 

S ' = H S .  (35) 

Equation (35) shows that matrices S and S' can be 
transformed into each other by a sequence of row addi- 
tions, i.e. they are row equivalent (as the H u are in- 
tegers, the elements of a row of matrix S are added to, 
or subtracted from, the corresponding elements of an- 
other row k times, with k an integer.) From equation 
(35) we have: 

S'S-1 = H.  (36) 

Matrices generating the same superlattice are related 
by equation (36). On the other hand, two superlattices 
generated by the matrices S and S' such that S'S -1 is 
not a matrix of determinant unity and composed of 
integral elements are called 'unique'. Unique super- 
lattices are built by using different nodes of the original 
lattice and may be metrically different or metrically 
identical. The generation of superlattices can be made 
without duplication if each class of matrices related by 
equation (35) can be represented by a uniquely defined 
matrix. Geometrically, this is equivalent to selecting one 
primitive cell of the superlattice as a representative of 
the infinitely many cells describing the same superlattice. 
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A matrix representing the class defined by equation 
(35) can be chosen by noting that any matrix S with 
integral elements S~j and determinant ISI >--1 can be 
transformed, by row additions, into an upper triangular 
matrix O which satisfies the conditions 

0_<Q~I < QJ~, with i<.j .  (37) 

This can be easily proved by applying the Euclidean 
algorithm (Niven & Zuckerman, 1962) to the second 
and third row of S until $3, =0,  then to the first and 
second row until $2~ = 0 and finally to the second and 
third row until Sa2=O. At this point the elements of 
the upper triangular matrix can be made positive with 
appropriate row additions. For example, matrix 
(112/-(21/221) can be transformed into the correspond- 
ing O matrix by means of the following row additions: 

(I 12/T21/221) -+ (I 12/T21/063) -+ (I 12/031/063) 
--> (112/031/005) --> (113/034/005). 

Matrix O belongs to the class of matrices (35) be- 
cause it is derived from S by row additions and it is 
uniquely defined because it is possible to prove that: 
(i) any given matrix $ can be transformed by row addi- 
tions into one and only one O matrix and (ii) all row- 
equivalent matrices defined by equation (35) have the 
same O matrix. Generating the unique superlattices of 
any given multiplicity A = 101 is, therefore, equivalent 
to deriving all the different matrices O having deter- 
minant equal to A, i.e. such that 

QnQ22Q33 = A . (38) 

As an example of the derivation of O matrices, let us 
consider the case A = 3. From expression (38) and from 
conditions (37) we immediately write down the 13 dif- 
ferent O matrices generating the 13 unique superlattices 
of multiplicity 3: 

(300/010/001); (100/030/001); (110/030/001); (120/ 
030/001); (100/010/003); (101/010/003); (102/010/003); 
(100/011/003); (101/011/003); (102/011/003); (100/012/ 
003); (101/012/003); (102/012/003). 

From the above procedure it is possible to show that, 
if A is a prime number, then the number n of unique 
superlattices of multiplicity A is given by 

n-- - -A(A+I)+I .  

If A =A~A2, where Ax and A2 are prime numbers, then 
n is given by 

n=[A(A + 1)+ 1] + AI(A1 + l) 
+A2(A2+I)+A(A,+A2) (40) 

if A1:#-212 and by 

n=[A(A + 1)+ 11 + A,[dl(AI+ 1)+ 1] (41) 

if 21~ =A2. The problem for A =A,AzA3, where A~, A2, 
A 3 are primes, is more complex as the Q~fs may assume 
any of the following values: 1,A,A 1, A2, Aa, All12, AxA3, 
A2Aa. Even in this case the O matrices can readily be 
derived. 
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